OB GYN SONOGRAPHY REVIEW

Fetal Skeleton

FETAL SKELETON

Course Outline

- Normal Sonographic Anatomy
 - Axial skeleton
 - Appendicular skeleton
- Skeletal Abnormalities

Normal Sonographic Anatomy

Axial Skeleton

- The axial skeleton consists of:
 - Cranial bones
 - Facial bones
 - Pelvis
 - Spine

Cranial Bones

- Frontal, temporal, occipital, parietal bones
- Sphenoid bone & petrous ridges:
 - Separate cranial fossae: anterior, middle, posterior

CRANIAL BONES

AXIAL SKELETON

Facial Bones

- Orbits
- Maxilla
- Mandible
- Bony nasal septum

FACIAL BONES

Pelvic Bones

- Iliac ossification centers seen from early 2nd trimester
- Ischial ossification centers seen at ≈ 20 weeks
- Sacrum and sacroiliac joints

PELVIC BONES

AXIAL SKELETON

Spine

- Three ossification centers in each vertebra
 - 1 anterior (vertebral body)
 - 2 posterior (between lamina and pedicles)
- Spine can be visualized with great clarity after 22 weeks

SPINE

Location, configuration, number of ossification centers in each vertebra

NORMAL SONOGRAPHIC ANATOMY - SPINE

Sagittal spine

1 = sacral-caudal tapering
2 = lumbosacral curvature
3 = cervical curvature

Appendicular Skeleton

- The appendicular skeleton consists of:
 - Bones of the appendages
 - Upper extremity
 - Lower extremity

Appendicular Skeleton

- Upper extremity bones
 - Scapulae & clavicles ≈ 7 weeks
 - Metacarpals ≈ 16 weeks
 - Radius & ulna ≈ mid 2nd trimester
 - Humerus ≈ mid 2nd trimester

Appendicular Skeleton

- Lower extremity bones
 - Tibia & fibula & ankle mortise ≈ mid 2nd trimester
 - Metatarsals ≈ 16 weeks
 - Radius & ulna ≈ mid 2nd trimester
 - Femur ≈ mid 2nd trimester

Femur arrow = femoral head

Humerus arrow = humeral head

Long bones - proximal

Long bones - distal

Proximal, mid, distal phalanges

Ossified metacarpals

Upper extremity - hand

Lower extremity - foot

Foot - lateral view *Arrow - calcaneus*

Lower extremity - foot

Skeletal Abnormalities

Major Categories

- Osteochondrodysplasias
- Dysostoses
- Idiopathic osteolyses
- Miscellaneous disorders with osseous involvement
- Chromosomal aberrations
- Primary metabolic abnormalities

Major Categories

- Osteochondrodysplasias
- Dysostoses
- Idiopathic osteolyses
- Miscellaneous disorders with osseous involvement
- Chromosomal aberrations
- Primary metabolic abnormalities

Definition of Terms

- Most lethal skeletal dysplasias are associated with shortened limbs
- Medical terminology describing type and extend of limb shortening is integral part of preanal sonographic examination
 - *Rhizomelia*: shortening of proximal segment of limb (humerus, femur)
 - *Mesomelia*: Shortening of distal segment of limb (forearm, calf)
 - *Micromelia*: shortening of both proximal and distal segments
 - Amelia: absence of a limb

LIMB SHORTENING TERMINOLOGY

Definition of Terms

- Medical terminology describing type and extend of limb shortening is integral part of preanal sonographic examination
 - Meromelia: partial absence of a limb
 - Polydactyly: presence of more than five digits on a single hand or foot (fingers or toes)
 - Syndactyly: soft tissue or bony fusion of digits (fingers or toes)

LIMB SHORTENING TERMINOLOGY

Osteochondrodysplasias

- Characterized by:
 - Defects of growth of tubular bones
 - Disorganized development of cartilage and fibrous skeleton
- Sometimes referred to as *dwarf syndromes*
- Severe, lethal type can usually be detected sonographically

Osteochondrodysplasias

- Severe, lethal type can usually be detected sonographically
 - Achondrogenesis
 - Achondroplasia
 - Thanatophoric dysplasia
 - Short rib-polydactyly syndrome
 - Campomelic dysplasia
 - Others

OSTEOCHONDRODYSPLASIAS

Achondrogenesis

- Rare, lethal form of short-limbed dysplasia
- Virtually no ossification of the vertebral bodies
- May be genetically inherited
- Two types:
 - Type I (Parenti-Fraccaro)
 - Type II (Langer-Saldino)

OSTEOCHONDRODYSPLASIAS

Achondrogenesis

- Associated abnormalities include:
 - IUGR
 - Cleft soft palate
 - Cystic hygroma

OSTEOCHONDRODYSPLASIAS

Achondrogenesis

- Sonographic findings include:
 - Lack of vertebral ossification
 - Small chest

- Large head with slightly decreased ossification of cranium (*caput membranaceum*)
- Severely shortened limbs (*micromelia*)

ACHONDROGENESIS

Prenatal sonogram.

Lack of vertebral ossification

ACHONDROGENESIS

Small chest

ACHONDROGENESIS

Postnatal radiograph

Prenatal sonogram

Caput membranaceum
ACHONDROGENESIS

Lower extremity

Upper extremity

Severely shortened limbs

Achondroplasia

- Genetic disorder affecting normal growth and development of skeletal system
- Most common form of short-limbed dysplasia
- Occurs in ≈ 1:25,00 50,000 births
- Two types:
 - Heterozygous achondroplasia
 - Homozygous achondroplasia

Heterozygous Achondroplasia

- Nonlethal type
- Characterized by rhizomelic limb shortening after 20 weeks
- Difficult to diagnose prenatally unless one parent has achondroplasia
- Sonographic characteristics:
 - Normal femur length on 1st US (18 20 weeks)
 - FL falls below 99th prediction interval by 27 weeks

Homozygous Achondroplasia

- Lethal type
- Both parents are achondroplastic dwarves
- Trait may be carried as autosomal dominant
- Trait may be a spontaneous genetic mutation

Achondroplasia

- Associated abnormalities with both types include:
 - Macrocephaly
 - Low nasal bridge with prominent forehead
 - Mid-facial hypoplasia
 - Short, tubular bones
 - Trident hand
 - Hydrocephalus
 - Spinal cord compression

Achondroplasia

- Sonographic findings include:
 - Rhizomelia
 - Frontal bossing of skull
 - Abnormal femur length measurements:
 - Homozygous: FL below 5th percentile prior to 20 weeks
 - Heterozygous: normal FL prior to 20 weeks

ACHONDROPLASIA

Postnatal radiograph.

Prenatal sonogram.

arrow = femur *curved arrow* = concomittant talipes equinovarus

Rhizomelia

Thanatophoric Dysplasia

- Lethal skeletal dysplasia characterized by:
 - Cloverleaf skull
 - Both parents of normal stature
 - Extreme rhizomelia
 - Short, bowed limbs
 - Hypoplastic thorax

Thanatophoric Dysplasia

- Associated abnormalities include:
 - Macrocephaly
 - Hydrocephalus
 - Patent ductus arteriosus
 - Atrial septal defect
 - Horseshoe kidney
 - Hydronephrosis
 - Imperforate anus

Thanatophoric Dysplasia

- Sonographic findings include:
 - Cloverleaf skull
 - Markedly short and densely ossified, bowed, long bones
 - Hypoplastic thorax (bell-shaped chest)
 - Trident hand deformity
 - Polyhydramnios (71% of cases)
 - Flattened vertebral bodies

Cloverleaf skull

Cloverleaf skull

Sagittal section

Coronal section

Hypoplastic thorax

Trident hand deformity

Short Rib-Polydactyly Syndrome

- Lethal skeletal dysplasia characterized by:
 - Short limbs (*micromelia*)
 - Excessive number of digits (*polydactyly*)
 - Extremely narrowed thorax

Short Rib-Polydactyly Syndrome

- Associated abnormalities include:
 - Cardiac defects
 - Polycystic kidneys
 - Imperforate anus

Short Rib-Polydactyly Syndrome

- Sonographic findings include:
 - Polydactyly

- Narrowed thorax
- Striking micromelia
- Choroid plexus cysts

SHORT RIB-POLYDACTYLY SYNDROME

Polydactyly

SHORT RIB-POLYDACTYLY SYNDROME

Narrowed thorax

SHORT RIB-POLYDACTYLY SYNDROME

Striking micromelia

Campomelic Dysplasia

- Not always lethal
- Campomelia from French bent limbs
- Characterized by:
 - Bowing of long bones esp. lower extremity
 - Club feet are common
 - Hydronephrosis
 - Hydrocephaly

Campomelic Dysplasia

- Associated abnormalities include:
 - Hydrocephalus
 - GU dysgenesis
 - Micrognathia
 - Cardiovascular abnormalities
 - Polyhydramnios

Campomelic Dysplasia

- Sonographic findings include:
 - Sever bowing of long bones
 - Especially in lower extremities
 - Narrowed thorax
 - Associated hydronephrosis or hydrocephalus
 - Possible clubfoot

CAMPOMELIC DYSPLASIA

Postnatal radiograph

Prenatal sonogram

Severe bowing of long bones

CAMPOMELIC DYSPLASIA

Narrowed thorax

CAMPOMELIC DYSPLASIA

Bowed tibia and clubfoot

SKELETAL ABNORMALITIES

Idiopathic Osteolyses

- Autosomal dominant disorders characterized by failure of normal by ossification process
- Most common types encountered prenatally:
 - Osteogenesis imperfecta (OI)
 - Hypophosphatasia

Osteogenesis Imperfecta

- Disorder of collagen production, secretion, or function
- Eight types ranging from mild to lethal
- Overriding characteristics:
 - Hypomineralization of bone
 - Abnormal fragility of skeletal structures
 - In utero fractures result in bone shortening
 - Risk for delivery trauma resulting in intracranial hemorrhage and stillbirth

Osteogenesis Imperfecta

- Associated abnormalities include:
 - IUGR
 - Macrocephaly
 - Umbilical hernia

Hypophosphatasia

- Similar in manifestation to OI
- Deficiency of serum alkaline phosphatase (not collagen)
- Several subtypes. *Perinatal* subtype is uniformly lethal
- Overriding characteristics are similar to OI:
 - Hypomineralization of bone
 - Abnormal fragility of skeletal structures
 - In utero fractures result in bone shortening

SKELETAL ABNORMALITIES

Idiopathic Osteolyses

- Sonographic findings include:
 - Presence of long bone fractures or excessive callus formation
 - Drastically shortened long-bones with bowing
 - Hypomineralized skeletal structures
 - Enhanced resolution of intracranial anatomy
 - Decreased calvarial ossification the permit pressure deformity with transducer compression
 - Rib cage deformities

Tibial fracture

Radial fracture

Long-bone fractures

Femur

Radius and ulna

Drastically shortened long-bones with bowing

Postnatal radiograph

Prenatal sonogram absent acoustic shadowing

Hypomineralized skeletal structures

Enhanced resolution of intracranial anatomy

Focal deformity from transabdominal transducer pressure

Spontaneous cranial deformity by fundal placenta and oligohydramnios

Pressure deformities
IDIOPATHIC OSTEOLYSES

Postnatal radiograph demonstratng multiple bilateral rib fractures

Prenatal sonogram

Rib cage deformities

Dysostoses

- Isolated bony malformation that may occur alone or in conjunction with various syndromes
- Most common types encountered prenatally:
 - Talipes equinovarus (*clubfoot*)
 - Rocker bottom foot
 - Radial ray anomaly

Talipes Equinovarus

- Most common skeletal anomaly detected during routine OB sonographic examination
- Can occur as an isolated defect or in conjunction with multiple syndromes
- Etiologies include:
 - Genetic
 - Environmental
 - Uterine constraint (amniotic band syndrome)

Talipes Equinovarus

- Score of associated anomalous conditions (too many to list)
- Pathology: inversion of foot and flexion of sole
- Sonographic detection based on knowledge of relative orientation of foot and lower extremity
 - Normal: lateral view of tib-fib = lateral view of foot
 - Clubfoot: lateral view of tib-fib = foot appears AP

TALIPES EQUINOVARUS

Normal feet

Clubfoot

Clubfoot (standard 2D imaging)

TALIPES EQUINOVARUS

Bilateral

Rocker Bottom Foot

- Dorsal and lateral dislocation of the talonavicular joint and prominent calcaneus
- Mimics appearance of the rocker on a rocking chair
- Sometimes classified as soft sign for aneuploidy
 - Trisomy 13 (Patau syndrome)
 - Trisomy 18 (Edwards syndrome)
 - 18q deletion syndrome
 - Spina bifida

ROCKER BOTTOM FOOT

Radiograph

Sonographic demonstration

Radial Ray Anomaly

- Partial to complete absence of the radius
- Usually associated with abnormalities of wrist and thumb
- Large spectrum of appearances
- Associated abnormalities include:
 - Trisomy 18 (Edward syndrome)
 - Amniotic band syndrome
 - Holt-Oram syndrome
 - VACTERL association

Radial Ray Anomaly

- Sonographic findings include:
 - Absent or hypoplastic radius
 - Sharp medial rotation of hand
 - Absent thumb in some cases

RADIAL RAY ANOMALY

Postnatal radiograph

Prenatal sonogram

OB GYN SONOGRAPHY REVIEW

Fetal Skeleton

